Syllabus for B.Sc. VI Semester Optional Physics

PHY 601: Paper 6.1: Nuclear physics, Solid State Physics, Astrophysics & Biophysics

Total hours of teaching: 42 hrs

1. Nuclear Physics

4 hrs

Nucleus composition; mass, charge, size, density, spin and magnetic moment. Binding energy of nucleus. nuclear force; characteristics of nuclear forces, Yukawa theory – qualitative. Nuclear models; liquid drop model and shell model (qualitative).

2. Radioactivity

4 hrs

Radioactivity decay law, half life and mean life with derivations Radioactive particles α , β and γ and their characteristics, Alpha decay - Gamow's theory (brief description), Beta decay- Fermi theory (brief description), neutrino hypothesis and Gamma-decay.

3. Nuclear Instruments

4 hrs

Detectors of nuclear radiation: Geiger –Muller Counter and Scintillation Counters. Particle accelerators: Construction and theory of Cyclotron and Betatron.

4. Alternate energy Sources

6 hrs

Conventional and non-conventional energy sources, ecological and sociological perspective. Wind energy, tidal energy and bio-energy (qualitative). Nuclear energy: Nuclear reaction.

Q – value. Nuclear fission, nuclear reactors, nuclear fusion, thermonuclear reaction.

5. Crystal Structure

4 hrs

Concept of lattice, unit cell, Bravais lattice, crystal, crystal planes and Miller indices, structure of NaC1. X-ray diffraction-Bragg's law derivation, types of X-ray diffraction techniques (qualitative),

6. Electrical and thermal properties of solids

6 hrs

Free electron theory of metals, Expression for electrical and thermal conductivities. Concept of Fermi energy and its variation with temperature (qualitative). Specific heats of solids: Dulong and Petit law, Einstein and Debye theories (main features and results).

7. Magnetic properties of solids

4 hrs

Define magnetic moment. Diamagnetism (explain origin) - Langevin classical theory, Paramagnetism - curies law, ferromagnetism, hysteresis loop, Weiss theory (main features).

8. Superconductivity

5 hrs

Discovery of superconductivity, zero resistivity, Meissner effect, give examples of metals exhibiting superconductivity, persistent current, critical fields, type I and type II of superconductors, London's penetration depth, Results of BCS theory. High temperature superconductors, applications of superconductors.

9. Astrophysics

5 hrs

Light year and parsec; luminosity of stars, apparent & absolute magnitudes. Colour and surface temperature of stars, spectrall classification of stars, HR diagram, Formation and

evolution of stars (qualitative); end stages of stars – white dwarfs, neutron stars and black holes (qualitative).

Reference books

- 1. Introduction to solid state physics by C Kittel.
- 2. Solid State physics by A J Dekkar.
- 3. Introduction to solid state physics by J S Blackmore
- 4. Modern physics by R Murugeshan.
- 5. Nuclear physics by D C Tayal.
- 6. Non –Conventional Energy Source by G D Rai.
- 7. Energy Technology by S Rao and B B Rarulekar.
- 8. Introductory Nuclear physics by Kenneth Crane (john Wiley).
- 9. An Introduction to Astrophysics by Baidyanath Basu.
- 10. Astronomy by Fundamentals and Frontiers –R jastrow and M H Thompson.
- 11. Biophysics by Vasanth Pattabhi and N Gautham.
- 12. Essentials of Biophysics by P Narayanan.

PHYL6.1: Practical course for Semester VI

- 1. Two experiments (3 hours duration each) per week should be performed.
- 2. One practical internal test of 3 hours duration for 15 marks be conducted at the end of practical course in the semester.
- 3. Minimum of 6 experiments should be performed in semester VI.

List of experiments

- 1. Analysis of random error: Poisson distribution, statistics of nuclear counting.
- 2. Characteristics of GM tube.
- 3. Verification of inverse square law using GM tube.
- 4. Determination of half life using GM tube.
- 5. Study of 4 bit binary counter (Using IC 7483)
- 6. Maping of Constallations.
- 7. Field Effect Transistor.
- 8. Phase shift oscillator using transistor.
- 9. Astable multivibrator using transistor.
- 10. Determination of self inductance of a coil using Anderson's bridge.
- 11. Frequency response of an RC coupled single stage CE amplifier.- determination of bandwidth.
- 12. Frequency response of emitter follower.- determination of bandwidth.
- 13. Determination of voltage gain, current gain, input impedance, output impedance of an emitter follower.
- 14. Hartley oscillator using transistor
- 15. Seven segment display using LED.